
The contact lens wearer ..

..who sometimes sleeps in their lenses..

..and who thinks their 2-week lens is a monthly-replacement..

Incidence of infectious keratitis

- CDC estimated nearly 1 million annual visits to ophthalmology offices or ED for *keratitis* (2010)¹
- Population-based study (1998-1999)²
 - 27.6 per 100,000 person-years in non CL wearers
 - 130.4 per 100,000 person-years in CL wearers

How do corneal ulcers occur?

- 1. Corneal defenses are violated
- Opportunistic pathogen invades
 Virulent invading organism
 Normal ocular flora

Risk Factors

- Contact lens wear
 - Soft > rigid gas permeable
 Extended > daily wear
 - Extended > daily wear

8

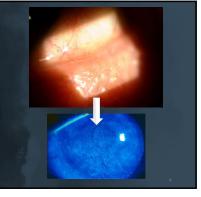
Risk Factors

• Contact lens wear

• Epithelial breakdown • Dry eye

Risk Factors

• Eyelid disease • Trichiasis


• Facial nerve palsy

• Trauma or corneal surgery

• Ectropion or entropion

• Bullous keratopathy

- Hydrops
- Neurotrophic keratitis

Risk Factors

- Contact lens wear
- Epithelial breakdown
- Trauma or corneal surgery
 - Corneal abrasions
 - Recurrent corneal erosion
 - Foreign body
 - Vegetative matter?
- Etc

9

10

Risk Factors

Contact lens wear

- Epithelial breakdowr
- Trauma or corneal surgery
- Eyelid disease
- Systemic disease and immunocompromise
- Rheumatologic disease
- latrogenic (i.e. chemo)
- HIV/AIDS
- Diabetes


Risk Factors

- Contact lens wear
- Epithelial breakdown
- Irauma or corneal surger
- Eyelid disease
- Systemic disease and medical immunosuppression
- Geography

13

• Hot/humid areas ightarrow fungal infections!

14

Pertinent Findings
Location
Epithelial defect
Presence of infiltrate(s)
Stromal edema
Stromal thinning
Anterior chamber
Keratic precipitates
Intraocular pressure
Perineuritis
Eye Pain
Eye Sensitivity

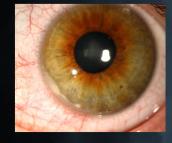
SterilevsInfectiousMild Pain
Peripheral
SmallModerate to Severe Pain
Central
LargeMultiple and arcuate
Epithelium intact
AC quietIndividual
Full defect
AC reaction
Mucopurulent discharge
Red, injected eye

19

Location, location, location!

- Central –likely more virulent pathogen
- Peripheral more likely staph marginal

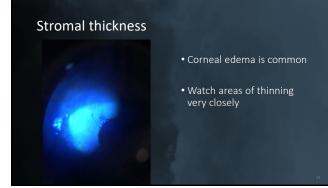
20



• Presence <u>or</u> absence!

- What do the borders look like?
 Hazy/feathered → think fungal
- Multiple infiltrates may be seen in satellite, atypical, or staph species

21



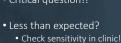
- Relative size compared to infiltrate?
- Monitor for response to treatment

22

24

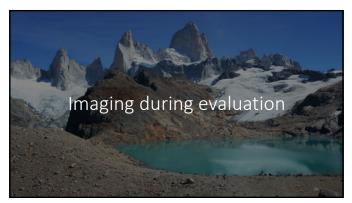
Stromal thickness

- Corneal edema is common
- Watch areas of thinning very closely
- Excessive edema?
 - Think HSV!


Anterior chamber

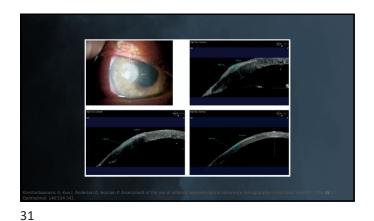
26

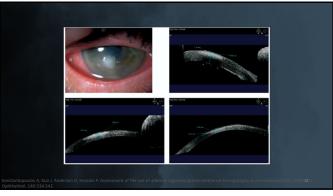
- AC reaction ≠ infection
- Hypopyon may be present in severe cases
- Granulomatous KPs could suggest herpetic
- Grade at each visit

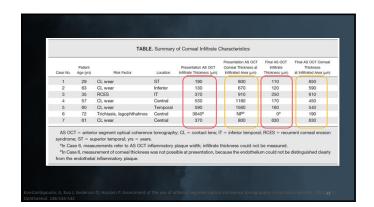


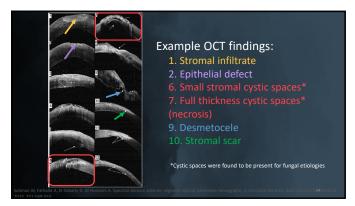
- More than expected? • Consider acanthamoeba

27

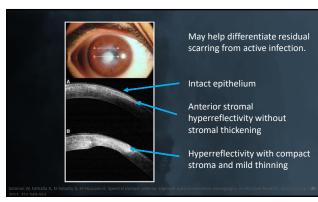


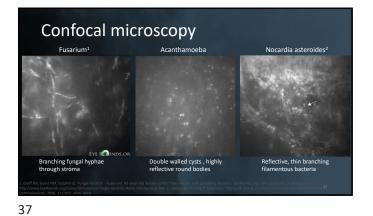

28

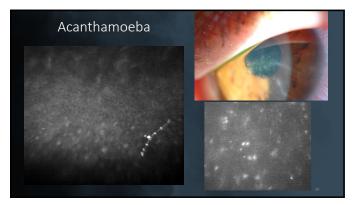



Anterior segment OCT

- Supportive tool in diagnosis and management, including objective treatment response, of microbial keratitis^{1,2}
- Best results with high resolution

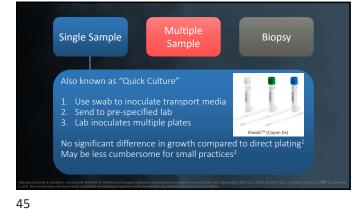


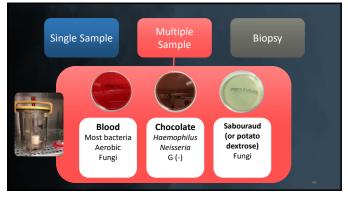

34

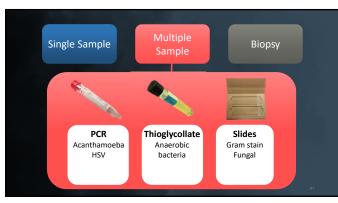

Confocal microscopy

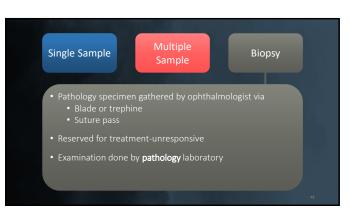
Supportive tool in diagnosis of <u>atypical</u> microbial keratitis

- Pros:
 - Excellent magnification allows in vivo visualization of corneal planes
- Cons:
 - Acquiring and interpreting images is challenging and requires experience




Realistic recommendations


- 1. Central lesions that threaten vision
- 2. Risk of perforation
- 3. Scleral tissue involvement
- 4. Lesion is not responding to treatment
- 5. Infiltrate after injury with vegetative matter
- 6. Institutionalized patients where MRSA is possible
- 7. Atypical features suggestive of fungal, amoebic, or mycobacterial



44

51

52

Bacterial keratitis

- The most common pathogens we will see!
- North America: staphylococcus aureus (G+)
 Contact lens: pseudomonas aeruginosa (G-)

How does the literature guide our management of bacterial keratitis?

Resistance is on the rise

56

Prospective Surveillance Studies

• TRUST 2008^{1,2,3} (Ocular Tracking Resistance in the US Today)

• ARMOR 2009-2018⁴ (Antibiotic Resistance Monitoring in Ocular Microorganisms)

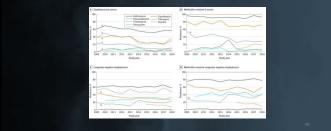
Ocular TRUST (2005-2008)

Ocular Tracking Resistance in the US Today

- S. aureus methicillin resistance up to 50%
 Concurrent resistance to other antibiotic classes, as well
- 2. Coagulase-negative staphylococci (CoNS) methicillin resistance as high as 62%

57

58

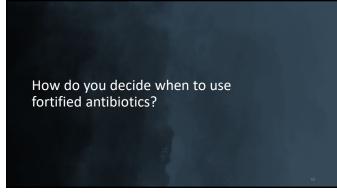

ARMOR (2009-2018)

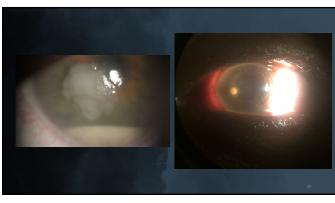
Antibiotic Resistance Monitoring in Ocular Microorganisms

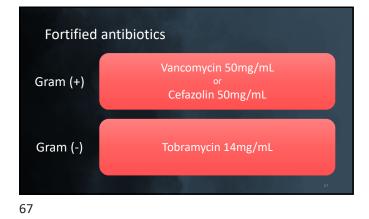
- S. aureus and Coagulase-negative staphylococci (CoNS) have high rates (nearly 30-50%) of methicillin resistance
- 2. These methicillin-resistant organisms *also* showed higher resistance to fluoroquinolones, aminoglycosides, and macrolides
- 3. Fluoroquinolones: Besifloxacin >> alternate 4^{th} gen > 2^{nd} or 3^{rd} gen
- 4. Vancomycin still with high susceptibility
- 5. S. pneumoniae, P. aeruginosa, H. influenza appeared pan-sensitive (yay!)

ARMOR (2009-2018)

Antibiotic Resistance Monitoring in Ocular Microorganisms

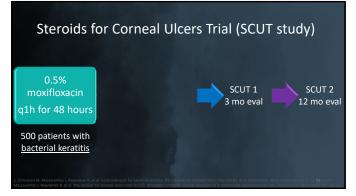






Treatment Schedule

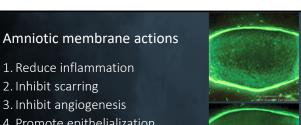
Fortified example dosage schedule:


- Every 1-2 hours around the clock
- Improvement?
 Every 2-4 hours while awake
- Resolution
 Discontinue

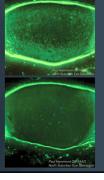
68

70

Steroids for Corneal Ulcers Trial (SCUT I)


- 1. Steroid group required more time to re-epithelialize
- 2. 4 adverse events in the placebo group and none in the steroid group
- 3. No statistically significant difference in VA at 3 months
- 4. No statistically significant difference in scar size at 3 months

Steroids for Corneal Ulcers Trial (SCUT study)

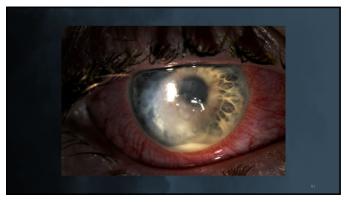


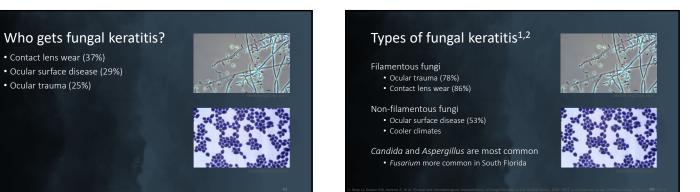
74

- 4. Promote epithelialization
- 5. Possess anti-microbial properties
- 6. Restore lost corneal thickness*

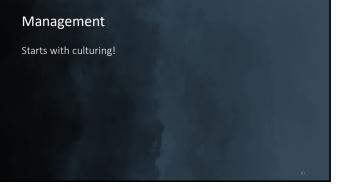
Amniotic membrane indications

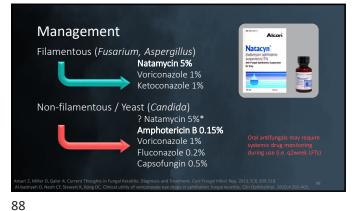
- •Corneal ulcer
- •Neurotrophic defect
- Corneal burn (chem or thermal)
- Dry eye / filamentary keratitis
- •Acute SJS
- Etc..





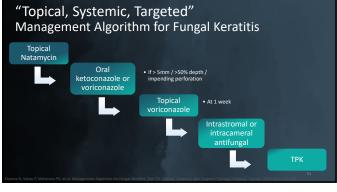
Features of fungus (vs bacteria)


- Less painful, less inflammation
- Satellite lesions common
- Feathered infiltrate edges
- Deeper stromal involvement
- Take longer to worsen
- Co-infections can be common



86

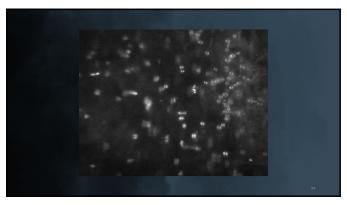
87



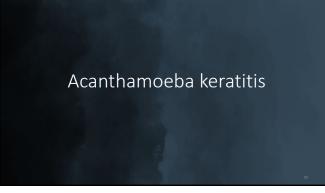
Mycotic Ulcer Treatment Trials (MUTT I and II)

Take home points:

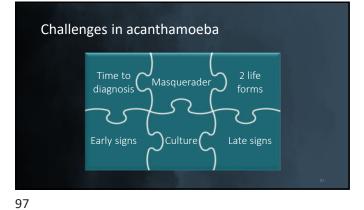

- Natamycin outperformed voriconazole¹ * All cases were filamentous
- Better VA, smaller scars, fewer perforations or TKPs
- Added oral voriconazole did not improve outcomes²
 - Rate of perforation equal, need for PKP same, more adverse effects with vori


Fungal keratitis: in summary

- Cultures can be difficult to obtain
- Buckle up for the long haul... Fungal keratitis treatment can last MONTHS!
- Aggressive (hourly) treatment
- Follow daily until improvement


92

93


94

Diagnosing acanthamoeba

"The most important step in AK diagnosis is to think of it."

– Lorenzo-Morales et al ¹

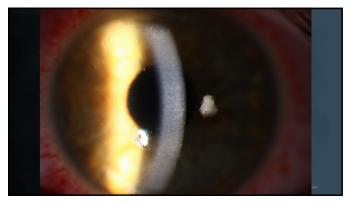
Clinical signs of acanthamoeba

Early

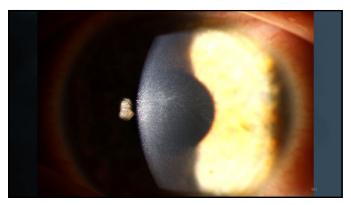
- Nonspecific superficial keratopathy (may be "dendritic")
- +/- perineuritis
- Pain >> findings

Mid stage

• Anterior stromal infiltration (often multifocal)

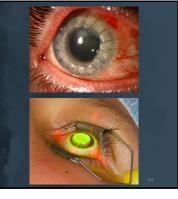

Late stage

- Deep stromal infiltration
- Ring infiltrate


98

99

100



The big guns

- Therapeutic penetrating keratoplasty
- Photodynamic therapy

104

105

Photodynamic antimicrobial therapy

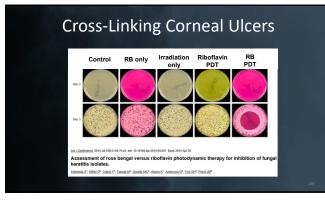
Why does it work??

- 1. Inhibit microbial growth
- 2. Induce oxidative damage to pathogens
- 3. Strengthens stroma to reduce susceptibility to enzymatic digestion

106

Cross-Linking Corneal Ulcers

Ultraviolet (UVA) with Riboflavin

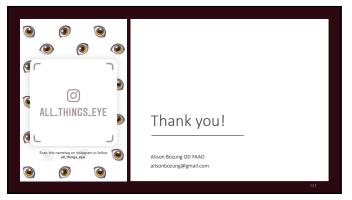

- First non-infectious corneal melt (2000)¹
- First infectious microbial keratitis (2008)²
- Meta-analysis (2016)³
 - 96 bacteria, 32 fungi, 11 acanthamoeba, 2 herpes simplex, 13 coinfections, 21 inconclusive etiology
- Stronger evidence for effectiveness in bacterial cases vs fungal or protozoan

Cross-Linking Corneal Ulcers

Green light with Rose Bengal

- Inhibition of fungal keratitis isolates $(2014)^{1*}$
- Inhibition of MRSA keratitis isolates (2016)^{2*}
- Successful treatment of resistant fusarium keratitis (2017)³
- Reduces rate of therapeutic PK (2019)⁴

Denotes in vitro study


110

In conclusion..

- Infectious keratitis is COMMON
- Less virulent organisms are more common than the bad ones..
- We should manage infectious keratitis to the extent of our comfort and ability
- Know when to treat and when to refer

111

