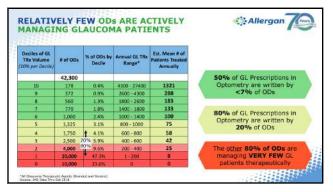
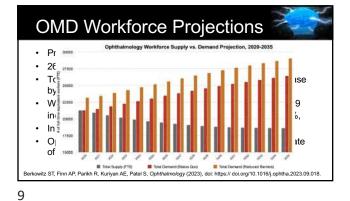
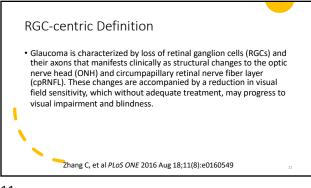


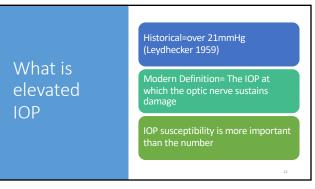
	2
 No financial disclosures 	

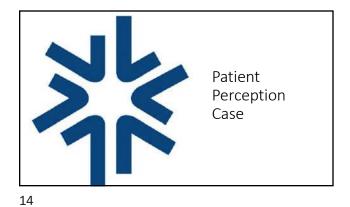

Objectives

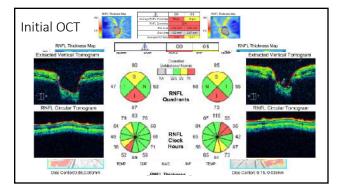
- Global Impact/Perspectives
- Patient centered approach
- · Macula and Glaucoma Basics
- · OCT reproducibility/Green Isn't clean
- Progression

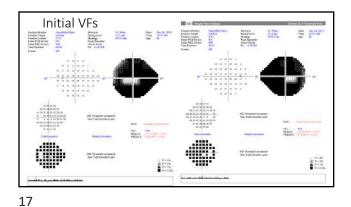


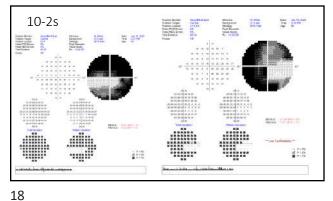


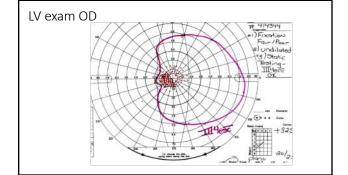


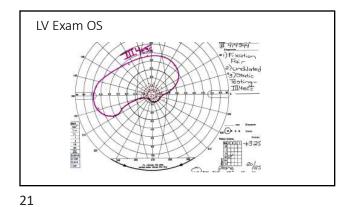


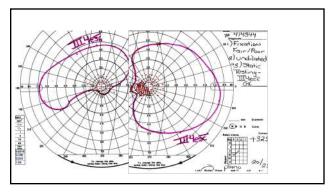


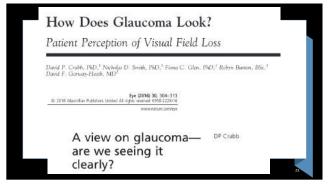




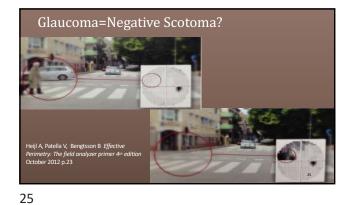


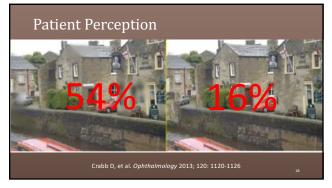




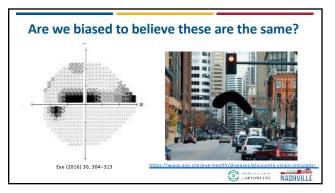

Our A and P

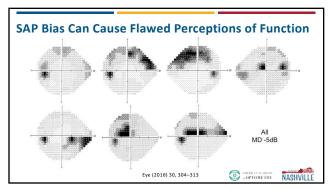
- POAG, severe OU
- (-) mobility issues or perceived blur
- Ed pt about glaucoma and s/s of disease progression. Discussed <u>Crabb forced choice images</u>. Patient asymptomatic.
- Refer for surgical consultation
- Refer for LV evaluation/Goldmann with Dr. Squier

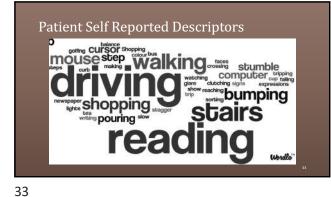












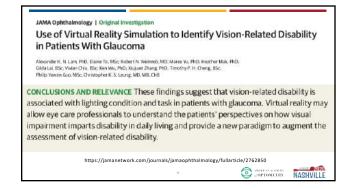
Patient Self Reported Descriptors

• Substantial variability in psychophysical testing¹

• Requires high volume of tests to detect change during followup²

• Substantial number of RGCs may be lost

prior to detection³ • Retinal loci/RGC receptive fields


sampled poorly by current strategies⁴

• Highly trained Perimetrist Required⁵

Lacks portability*

1) Susanna R, et al. TVST. 2015 2) Abe RY, et al IOVS 2016;57(9):421-8 3) Kerrigan-Baumrind LA, et al. IOVS. 2000;41:741-748 4) Ashimatey BS, Swanson WH. IOVS. 2016;57:502-507 5) Patella et al. Effective Perimetry 2012

37

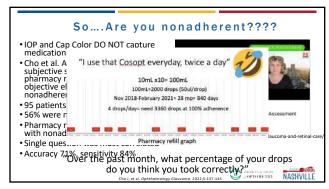
40

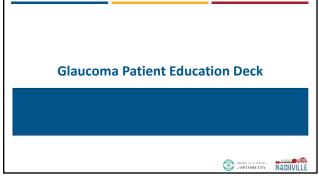
OPTOMETRY NASHVILLE

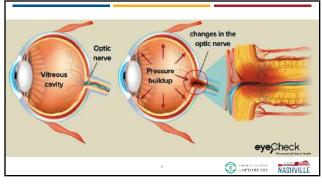
Medication Adherence Reality Check

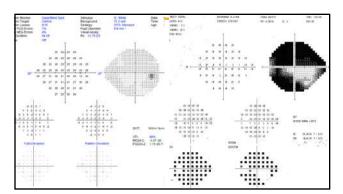
• 30-70% of mean doses are taken across multiple studies

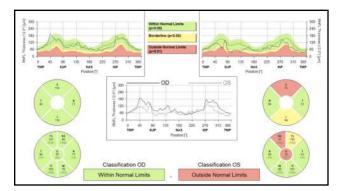
- \bullet 30-50% of medications are D/C in the first months of therapy
- Patients report far higher medication use than reality
- Patients DO NOT want to acknowledge undesirable behavior
- Ophthalmologists do a poor job of detecting nonadherence
- IOP and Cap Color DO NOT capture medication adherence
- Many patients DO NOT believe reduced vision is a risk of Not using drops

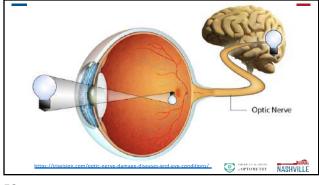

Doctor-Patient communication DOES contribute to patient adherence!!!

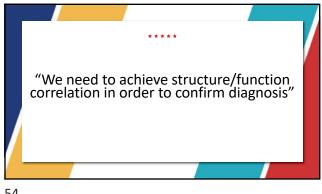

1)Friedman DS, et al. /0/5. 2007;48:5052-5057 2)Savitz ST, et al. *Med Care*. 2017;55:500-505 3) Okeke C, et al. *Ophthalmology* 2009;116:191-19 4) Okeke C, et al. *Ophthalmology* 2009;116:228-5238 5) Slota C, et al. *Ovi S* 2015;92:537-543 6)Oace R, et al. *Ophthalmology* 2009;116:191-2015;122:2373-2379. 7) Robin A, Grover D. *Indian J Ophthalmol.* 2011;59:593-96

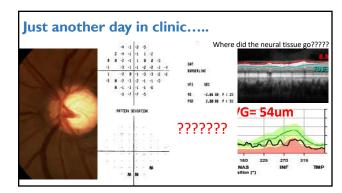

43

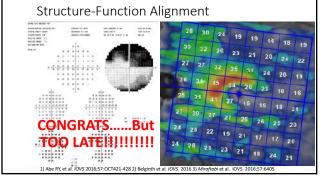


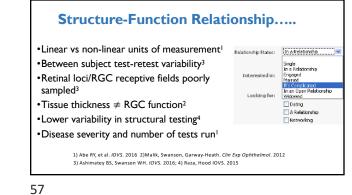


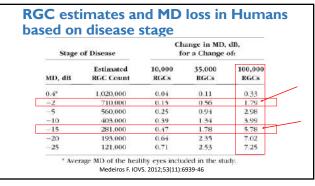


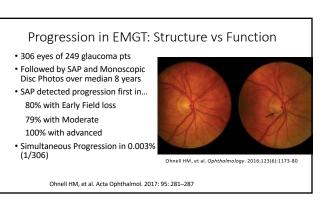




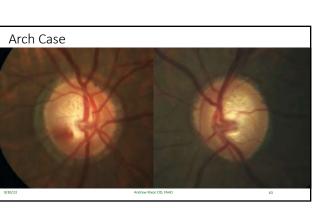


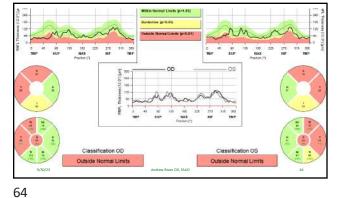






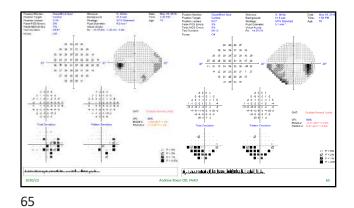
Structure versus Function in Glaucoma: The Debate That Doesn't Need to Be Felipe A. Medeiros, MD, PhD - San Diego, California Andrew J. Tatham, FRCOphth, FRCSEd - Edinburgh, United Kingdom

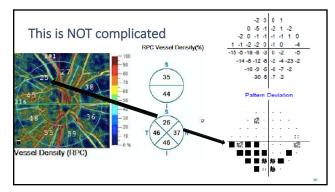

• Agreement is the EXCEPTION rather than the rule


"The disagreement between structural and functional changes may seem puzzling, because the death of a RGC and axonal loss obviously should be accompanied by the loss of function. However, it can be easily understood when considering the properties of the tests available to measure structure and function, such as their different scales, variability, and dynamic range"

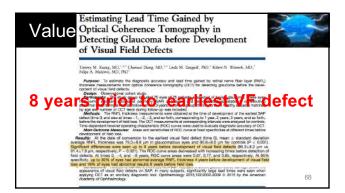
• Both have value, both are needed, Integration is key!

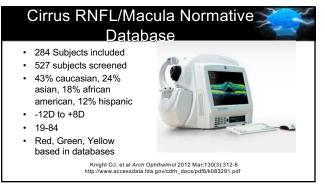
Medeiros FA and Tatham AJ. Ophthalmology. 2016;123(6):1171-72

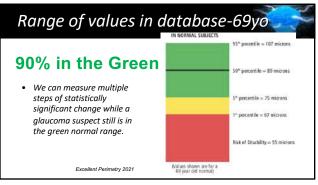


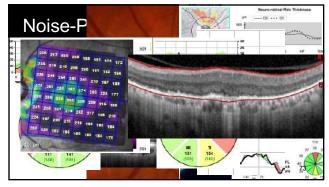

Function-Vascular Relationship May Not Be

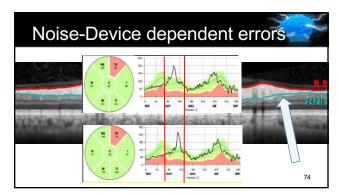
Complicated

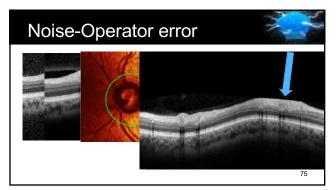

Yarmohammadi A, et al. Ophthalmology 2016;123:2498-2508

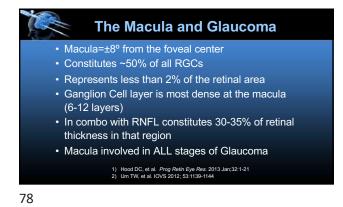


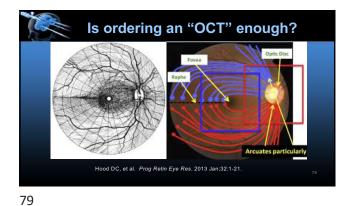


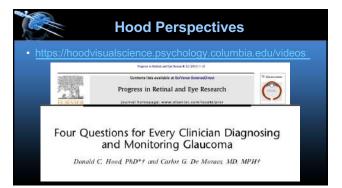


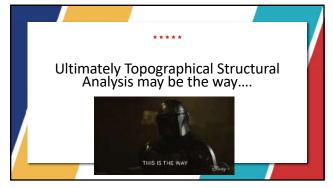


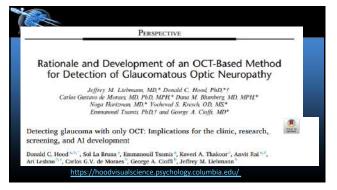




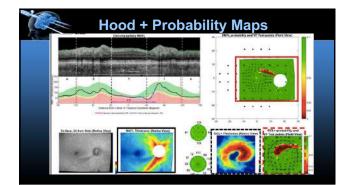


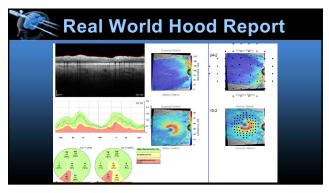


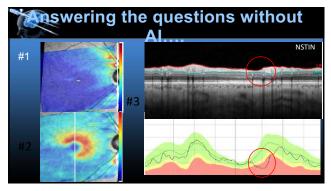


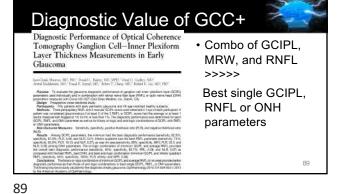


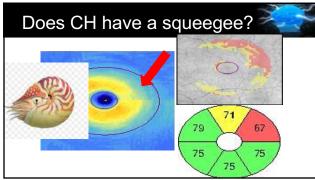
tvst Doc 161169/vgL464
Artide
Central Glaucomatous Damage of the Macula Can Be Overlooked by Conventional OCT Retinal Nerve Fiber Layer Thickness Analyses
143 OAG patients
10-2s, Macula and Disc Cubes
Combined RNFL (TQ, CH 7-10), RGC+, 10-2s
Experts graded as Abnormal or Normal macula
TQ missed 77%, TQ+CH7 39%, CH7-10 36%
Need more than cp-RNFL!!!
Wang DL, et al. Trans Vis Sci Tech. 2015; 4(6):4

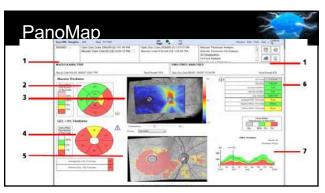


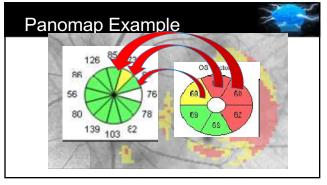


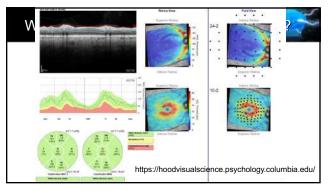

Questions to ask.....

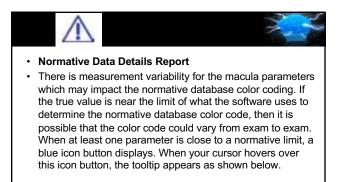

- Is there an arcuate-like abnormal region on the RNFL probability map associated with the temporal half of the disc?
- Is there a topographically corresponding abnormal region on the GCL probability map, largely temporal to fixation?
- Is there confirmatory evidence of a RNFL defect on the cpRNFL thickness plot/b-scan, the GCL thickness map and/or RNFL thickness map?

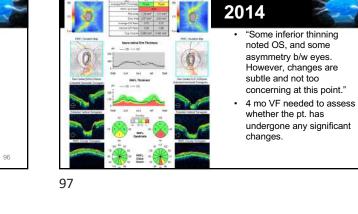

85



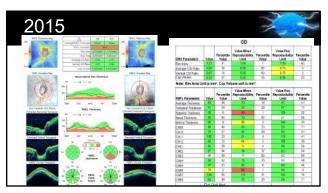


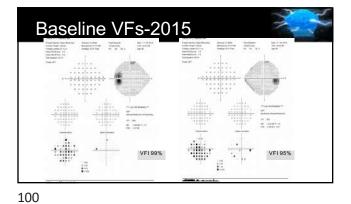


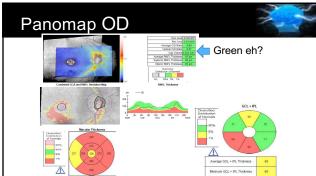


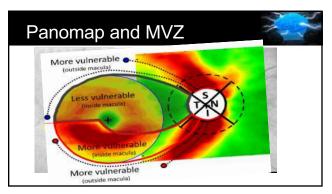

Va	ariabilityTool	Tip		The second
	\wedge	OD	OS	
	Average RNFL Thickness		82 um	
	RNFL S that ma		color coding	normative limit on a re-scan.
	Disc Area	1.56 mm ²	1.35 mm²	(i)
	Average C/D Ratio	0.53	0.31	<u> </u>
	Vertical C/D Ratio	0.66	0.33	
	Cup Volume	0.107 mm ³	0.030 mm ³	

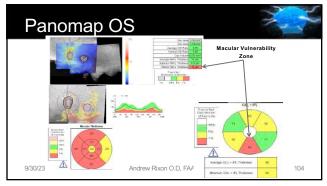
Illustrative Case

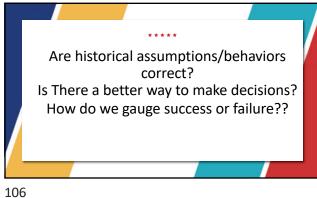

- October 2015
- 65yo AAM in for routine examination
- "Borderline" Glaucoma findings at last exam in 2014
- IOP: 20mmHg/20mmHg
- ONHs: Large discs .55/.60 OD .60/.65 OS

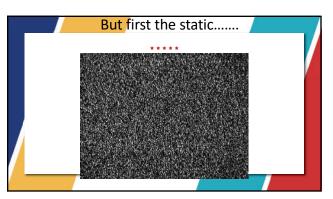

96

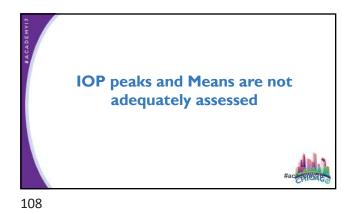


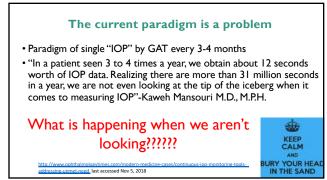

a company			Percent	Value Minus	Percentile	S OL	Percentile
RNFL Parameters	Value		ercentile Value	Value Minus Reproducibility	Percentile	Value Plus Reproducibility Limit	Percentile
Average Thickness	78		9	74	4	82	22
Temporal Thickness	70		80	.64	63	76	88
Superior Thickness	82		7	82	1.	102	22
Nasal Thickness	63		36	57	19	49	56
Inferior Thickness	-88		3	79	1	97	.10
CH12		89	19	71	6	107	42
CH01		83	17	69	4	97	44
CH02		69.	23	55	8	82	49
CH03		59	68	52	36	67	89
CH04		59	41	50	10	69	65
CH05		59	4	47	1	72	15
CH06		89	6	74	1	104	17
CH07		114	29	100	. 14	128	51
CH08		64	60	.55	- 35	73	79
-890.00m	10	H= C	lock Hour				

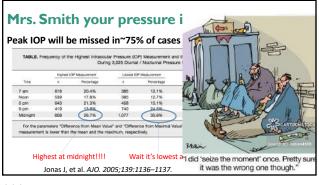

98

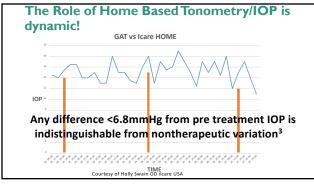




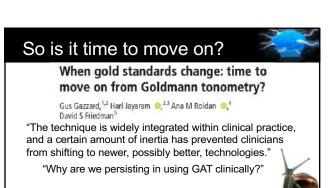


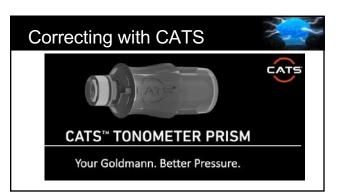




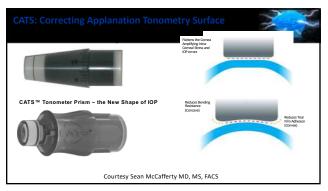

- •Treated POAG patients do NOT manifest a reproducible short or long term diurnal IOP pattern^{1,2}
- •Any difference <6.8mmHg from pre treatment IOP is indistinguishable from nontherapeutic variation³
- •"Snapshot" readings are most common way of assessing IOP⁴
- •Taking a single IOP measurement between 7am and 9pm has a >75% chance of missing the highest point of the diurnal curve⁵

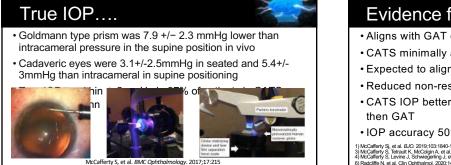
1)Realini T, et al. Ophthalmology. 2011;118:47–51 2)Aptel F, et al. Ophthalmology 2014;121:1998-200 3) Rotchford A, et al. 8/0. 2012;96(7):967-970 4) Melchior B, et al. Br J Ophthalmol. 2022;106:229-233


109



Br J Ophthalmol January 2021 Vol 105 No 1

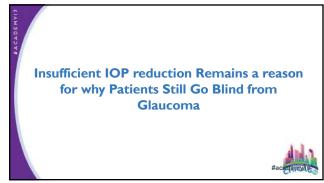


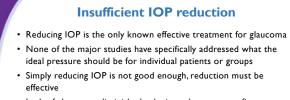

CATS core

- Sean McCafferty MD, MS (optical engineering)
- FDA cleared 2018
- Correcting applanation tonometry surface (CATS)
- Optimizes historical goldmann prism to minimize mechanical stress induced by the prism and reduce tear film adhesion
- Tear film error can \pm induce up to 4.5mmHg of error

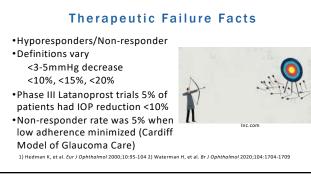
McCafferty S, et al. BMC Ophthalmology. 2017;17:215

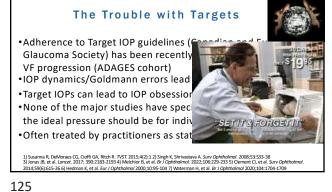
116

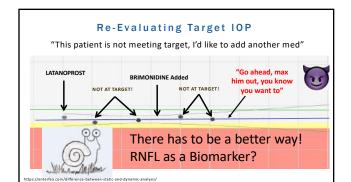


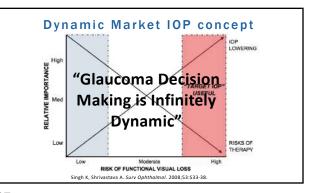


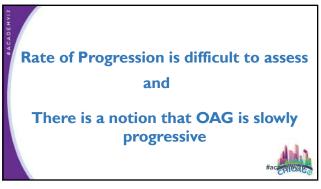
Evidence for CATS
Aligns with GAT on "nominal" corneas
CATS minimally affected by CCT or CH
 Expected to align with IOPcc*
• Reduced non-responder label from 36.1% to 13.8%
• CATS IOP better correlation with glaucoma progressors
then GAT
IOP accuracy 50% less affected by PRK and LASIK
1) McCafferty S., et al. BJO. 2019;102:1840:1844 2) McCafferty S. Lim G. Duncara W. et al. TVST. 2016;5:4–5. 3) McCafferty S. Tetrault K. McColgin A, et al. <i>Am J. Ophthalmol.</i> 2018 Dec:166:145-153. 4) McCafferty S. Low J. Schwiegening, J. et al. <i>BMC Ophthalmol.</i> 2018;16: 5) Ang ET, et al. <i>BMC Ophthalmol.</i> 2022;22:503

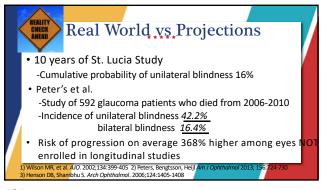

• Lack of change or diminished velocity only way to confirm effectivity

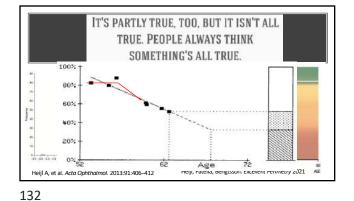

Susanna R, DeMoraes CG, Cioffi GA, Ritch R. TVST. 2015;4(2):1 Singh K, Shrivastava A. Surv Ophthalmol. 2008;53:S33-38

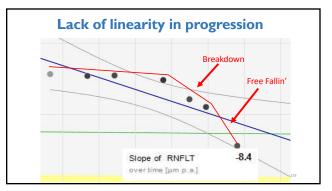

122

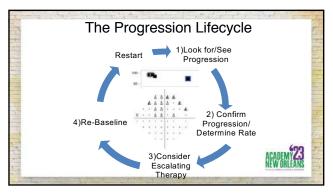

Ре	rcentage Based	d IOP Reduct Trials	tion in Major
Study	Target IOP	Actual IOP Reduction %	Outcome
OHTS1	20% reduction or 18mmHg	22.4%	POAG risk reduced by >50% in treated group at 5yrs
EMGT ²	No target	25%	55% of treatment group did NOT progress vs 35% of control at 6yrs
AGIS ³	<18mmHg (associative analysis)	30-37%	Mean of 12.3mmHg resulted in minimal progression at ≥6yrs
CNTGS ⁴	30% reduction	37%	12% treated eyes progressed vs 35% of control eyes in 5-7yrs
CIGTS ⁵	35-50% (Formula based)	48% (surgery) 37% (medicine)	$ \begin{array}{c} \text{Minimum}\Delta \text{to}\text{VF}\text{in either group at} \\ \text{4yrs} \end{array} $
	MA, et al. Arch Ophthalmol. 2002;120:701-713 130:429-440 4)CNTG Study Group. AlO. 2001;13		

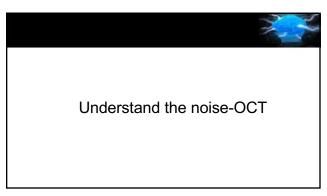


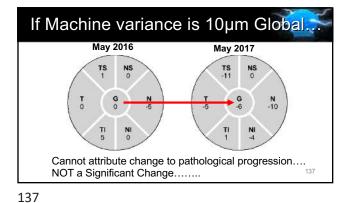


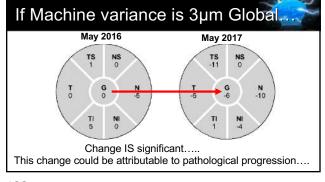












		measured on	32 normal subjects	L	
	Mean Thickness (µm)	Repeatability SD (µm)	Reproducibility SD (µm)	Repeatability Limit ^a (µm)	Reproducibility Limit ^b (µm)
Average	93.1	1.33	1.35	3.72	3.78
Temporal	64.6	2.03	2.05	5.68	5.74
Superior	118.8	3.42	3.45	9.58	9.66
Nasal	68.6	2.19	2.24	6.13	6.27
Inferior	123.6	3.01	3.14	8.43	8.79

	Mean Thickness (µm)	Repeatability SD (µm)	Reproducibility SD (µm)	Repeatability Limit ^a (µm)	Reproducibility Limit ^b (µm)
Oock hour 6	133.5	4.93	5.21	13.80	14,59
Clock hour 7	134.7	5	5.01	14.00	14.03
Clock hour 8	66.1	3	30	8.40	8.40
Clock hour 9	53:0	1,71	1.78	4.79	4.98
Jock hour 10	76.3	3.53	3.53	9.88	9.88
Jock hour 11	125.2	4.75	4.77	13.30	13.36
Jock hour 12	121.6	6.43	6.51	18.00	18.23

	Repea	tability	Reproducibility	
	Repeatability SD	Repeatability Limit ^a	Reproducibility SD	Reproducibility Limit ^b
GCA Parameters (µm)				
Average GCL + IPL Thickness	0.5839	1.6348	0.7479	2.0942
Minimum GCL + IPL Thickness	2.8630	8.0165	2.8935	8.1018
Temporal-Superior GCL + IPL Thickness	0.8394	2.3502	0.9496	2.6590
Superior GCL + IPL Thickness	0.9115	2.5522	1.0723	3.0024
Nasal-Superior GCL + IPL Thickness	0.9198	2.5753	1.0412	2.9154
Nasal-Inferior GCL + IPL Thickness	1.6735	4.6857	1.7330	4.8525
Inferior GCL + IPL Thickness	0.9962	2.7894	1.1907	3.3339
Temporal-Inferior GCL + IPL Thickness	0.8196	2,2948	0.9177	2.5696

What is significant change? Global/Average RNFL 4-5µm¹ Inf/Sup RNFL Sectors=9-15µm^{2,3} RNFL Clock hrs (Cirrus)=5-18µm⁴ · Inferior/Superior regions more sensitive/greater variability Average GCIPL=2-3µm⁵

- Average minGCIPL=7-8µm⁵
- Change MUST BE REPRODUCIBLE 1)Mwanza JC, et al. /0VS. 2015;56(11):6344-6351.2) Tan BB, et al. *J Glaucoma*. 2012;21:266-273 3)Tosacano DA, et al. *Arq Bras Offalmol*. 2012, 75(5):320-3 4) Zeiss Cirrus HD-OCT User Manual 2017₁₄₂ 5) Kim KE, et al. *IOVS*. 2015;56:4857-4864

142

What is 5um worth?

- Loss of 70,000 axons if axon=1um diameter
- 141,500 axons if axon=0.7 (Fortune)
- Baseline 848,827±167,928 in progressors (Medeiros)
- Baseline 1,026,569±158,081in nonprogressors (Medeiros)
- 7500 axons/yr over age 50 normal (Quigley)
- ~19,000 per/yr in progressors, 8,800 per/yr in non progressors •
 - Every 10,000 cells/yr faster =2.7x risk of progression

IOVS 2013 Jun;54(6):4174-4183

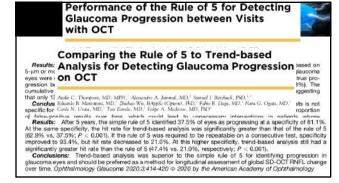
143

144

Rates of Progression

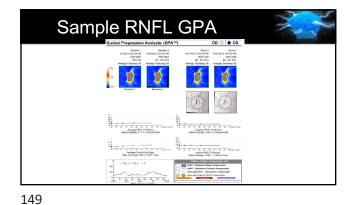
Age-related	Slow	Moderate	Fast
-0.54µm/year	<-1µm/year	Between -1 and -2 µm/year	Between -2 and -4µm/year
-0.06dB/year	-0.5-1dB/year	-1-1.5dB/year	-1.5-2dB/year

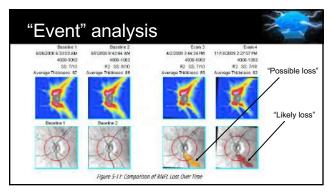
Cottrill, Maxey, Rixon. RevOptom July 2023

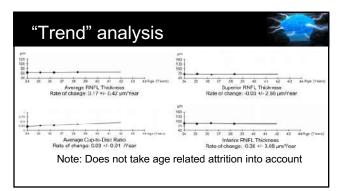

145

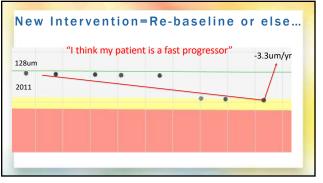
Confirm!!! before Initiating or Reinforcing

- Up to 56% of abnormal scans were not abnormal on $\ensuremath{\mathsf{F/U}}$
- Consider test-retest variability
- Minimally 2 consecutive follow-up exams
- Trend analysis performs better than event analysis
- May take <u>4.5-4.8yrs</u> to exceed test-retest if only 1 test per year

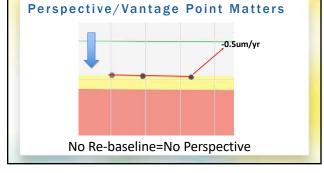

Yu M, et al. IOVS 2011

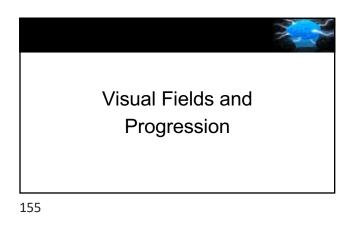

146

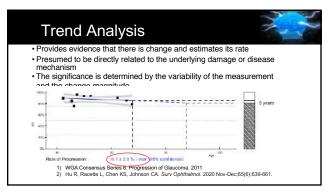


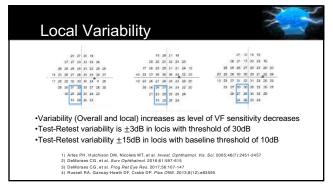

GPA
 Provides Event and Trend analysis
 Each "event" is compared to baseline and flagged on the RNFL thickness map
-Yellow "possible loss"
-Red "likely loss"
-Lavender "Possible increase"
 If events show repeatable statistical change over

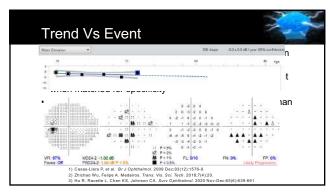

- If events show repeatable statistical change over baseline the likelihood description escalates
- Trend can analyze from 3 to 8 exams

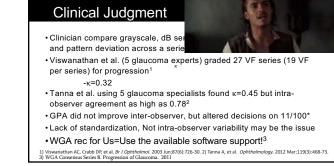











Provide and provid

Event Analysis

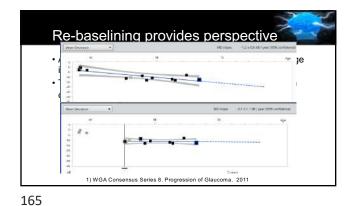
157

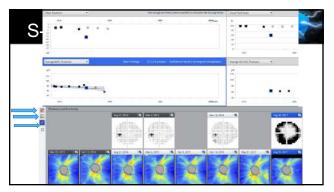
Rates of Visual Field Progression*

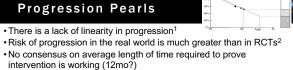
	Age Related	Slow	Moderate	Fast	Catastrophic
SAP in MDs 24-2	-0.06dB/yr	-0.3-1.0dB/yr	-1.0-1.5dB/yr	-1.5-2.0dB/yr	≥ -2.0dB/yr

 $\bullet\,5\text{-}13\%$ of patients under routine care as reported to be Fast Progressors^4

1 Jammal AA, Thompson AC, Mariottoni EB, et al. Am J Ophthalmol. 2021;222:238-247 2:Spr) PG. Johnson CA. Optom Vis Sci. 2001; 72(6);354-1 3 Saunder L, Medreis FA, Wainer MR, Zangvill LL. Expert Review of Ophthalmology. 2016;11(3):227-234 4 Jackson AB, Martin KB, Cocke MA et al. Ophthalmology. 2023 May;130(5):462-468 5 Chaultan BC, et al. 10VS 2014: 531154-143


161


Vertre dutterent A weckelik Porgression of Clauseom Porgression should be the minimum (After new baseline) Porgression of Clauseom Porgression Status Porgression Status<


162

(a)	Progression rate (dB/year)			
Total MD change (dB)	2 years	3 years	5 years	
-1.0	-0.5	-0.3	-0.2	
-2.0	-1.0	-0.7	-0.4	
-4.0	-2.0	-1.3	-0.8	
(b)	Annual exam	ninations		
Total MD change (dB)	2 years	3 years	5 years	
-1.0	7	6	4	
-2.0	5	4	3	
-4.0	(3)	3	2	

(a) 1 examination/year Progression rate (dB/year)	Variability		
	Low	Moderate	High
-0.25	13	19	30
-0.5	9	13	19
-1.0	6	9	13
- 2.0	5	6	lyrs
(b) 2 examinations/year	Variabilit	v	
Progression rate (dB/year)	Low	Moderate	High
-0.25	6.5	8.5	15
-0.5	4.5	6.5	8.5
-1.0	3	4.5	6.5
2.0	2.5	3	4 Syrs

- Confirmation of progression/stability requires vigilance
- •2 Baseline VFs, followed by 2-4 in the next 18 mo is WGA recommendation⁴
- •2 OCT/OCT scans per year are likely sufficient to detect progression⁵ A target rate of progression may be>>> target IOP³

Heiji A, et al. Acta Ophthalmol. 2013;91:406–412 2) Peters, Bengtsson, Heiji Am J Ophthalmol 2013; 156:724-730
 Meichior B, et al. Br J Ophthalmol. 2022;106:229-233 4) Weinreb R et al. World Glaucoma Association Consensus Series-8 Progression of Glaucoma 2011 p.5 2) Mahmoudinec 6, et al. AUC. Online Sept 2022

Thank You!!!!